高一数学,函数f(x)=a^(x-1⼀2) (0<a<1),且满足f(lga)=10^(1⼀2) 求a

没有打错字,求教
2025-06-21 13:00:45
推荐回答(5个)
回答1:

上面的那两位注意,a的范围是 0解:由题意知:
f(x)=a^(x-1/2),且f(lga)=10^(1/2),
即:a^(lga-1/2)=10^(1/2),
两边同时取lg,有:
(lga-1/2)lga=1/2,
即:(lga)^2-1/2*lga-1/2=0.
解得:lga=1或 lga=-1/2
解之得a=10或a=1/√10=(√10)/10
又0故:a=(√10)/10

回答2:

已知f(x)=A^(x-1/2),f(lgA)=√10

因f(x)=A^(x-1/2),
所以f(lgA)=A^(lgA-1/2)=√10
A^(lgA-1/2)=√10=10^(1/2)
lgA-1/2=logA[10^(1/2)]
=(1/2)logA(10)
=1/(2lgA)
2(lgA)^2-lgA-1=0
(2lgA+1)(lgA-1)=0
lgA=1或lgA=-1/2
A=10或A=10^(-1/2)=√10 /10

回答3:

f(x)=a^(x-1/2),且f(lg a)=10^1/2,
a^(lg a-1/2)=10^1/2,
a^(lg a-1/2)=10^1/2,
(lg a-1/2)lga=1/2,
(lg a-1/2)lga=1/2,
(lga)^2-1/2*lga-1/2=0.
(lga)^2-1/2*lga-1/2=0.
解得a=10或a=1/√10

回答4:

f(lga)=a^(lga-1/2)=10^(1/2)

a^lga/a^(1/2)=10^(1/2)

a^lga=(10a)^(1/2)

(lg a-1/2)lga=0.5

(lga)^2-1/2*lga-1/2=0.

a=10 或a=√10/10

回答5:

已知f(x)=A^(x-1/2),f(lgA)=√10

因f(x)=a^(x-1/2),
所以f(lga)=a^(lga-1/2)=√10
a^(lga-1/2)=√10=10^(1/2)
lga-1/2=loga[10^(1/2)]
=(1/2)loga(10)
=1/(2lga)
2(lga)^2-lga-1=0
(2lga+1)(lga-1)=0
lga=1或lga=-1/2
a=10或a=10^(-1/2)=√10 /10
0注意a的范围