1-1⼀2+1⼀3-1⼀4+…+(-1)n-1 1⼀n=

2025-06-21 13:46:27
推荐回答(1个)
回答1:

解:1-1/2+1/3-1/4+…+1/n-1 -1/n
=1/2+1/12+1/20+1/30+...+1/n(n-1)
=1/1*2+1/3*4+1/4*5+1/5*6+...+1/n(n-1)
=1-1/2+1/2-1/3+1/3-1/4+...+1/(n-1)-1/n
=1-1/n
=(n-1)/n