已知0<a<(pai⼀2),sina=4⼀5,求[sin^2a+sin2a]⼀[cos^2+cos2a]=?

2025-06-20 12:47:48
推荐回答(1个)
回答1:

1. 因为0利用倍角公式可知: sin2a=2sinacosa, cos2a=(cosa)^2-(sina)^2, 因此
[sin^2a+sin2a]/[cos^2a+cos2a]
=[(sina)^2+2sinacosa]/[2(cosa)^2-(sina)^2] (分子分母同时除以(cosa)^2)
=[(tana)^2+2tana]/[2-(tana)^2] (利用tana=4/3)
=[(4/3)^2+2*(4/3)]/[2-(4/3)^2]
=20

2. tan(a-5pai/4) (由tan的和差化积公式)
=(tana-tan(5pai/4))/(1+tanatan(5pai/4))
=(4/3-1)/(1+(4/3)*1)
=1/7