因为z=xey+ln(x2+y2),微分可得,dz=eydx+xeydy+ 2xdx+2ydy x2+y2 .代入点(1,0)的坐标可得,dz|(1,0)=e0dx+e0dy+ 2dx+0dy 12+02 =3dx+dy.故答案为:3dx+dy.