已知同一平面上a,b,c三个向量所成的角均相等,且|a|=2,|b|=3,|c|=6,求|2a+3b+6c|的值。

2025-06-21 20:56:07
推荐回答(1个)
回答1:

a,b,c是平面向量,故它们互成120度角,
a·b=2*3cos120°=-3,
b·c=3*6cos120°=-9,
a·c=2*6cos120°=-6,
设向量2a+3b+6c=(m,n),
|2a+3b+6c|=√(m^2+n^2),
向量(2a+3b+6c)·(2a+3b+6c)=4a^2+9b^2+36c^2+12a·b+36b·c+24a·c
=4|a|^2+9|b|^2+36|c|^2+12(-3)+36(-9)+24(-6)
=16+81+1296-36-324-144
=889,
|2a+3b+6c|=√889.