1+1⼀2+(1⼀3+2⼀3)+(1⼀4+2⼀4+3⼀4)+.....(1⼀50+2⼀50+.....+49⼀50)=?

2025-06-22 10:03:48
推荐回答(1个)
回答1:

1/n+2/n+3/n+……+(n-1)/n
=[1+2+……+(n-1)]/n
=[n(n-1)/2]/n
=(n-1)/2
所以原式=1/2+2/2+3/2+……+49/2
=(1+2+……+49)/2
=49*50/2/2
=612.5