如图,在平面直角坐标系中,一次函数y=x+2的图象与x轴交于点A,与y轴交于点B,点C的坐标为(2,0)

2025-06-21 16:12:33
推荐回答(2个)
回答1:

解:(1)∵y=-2x+2,∴当x=0时,y=2,即A点坐标为(0,2),当y=0时,x=1,即C点坐标为(1,0).过点B作BD⊥x轴,垂足为D.在△BCD与△CAO中,

∠BDC=∠COA=90°
∠BCD=∠CAO=90°−∠ACO
BC=CA

,∴△BCD≌△CAO,∴BD=CO=1,CD=AO=2,∴B点坐标为(3,1),∴经过点B的反比例函数解析式为y=
3
x
;(2)设直线BC的解析式为y=kx+b,将B(3,1),C(1,0)代入,得

3k+b=1
k+b=0

,解得

k=
1
2

b=−
1
2

,∴直线BC的解析式为y=
1
2
x-
1
2
;(3)∵抛物线y=ax2-ax-2经过点B(3,1),∴9a-3a-2=1,解得a=
1
2
,∴抛物线的解析式为y=
1
2
x2-
1
2
x-2.∵MN∥y轴,∴可设M(x,y1),N(x,y2),∵点M在线段BC上,∴y1=
1
2
x-
1
2
,N在抛物线上,∴y2=
1
2
x2-
1
2
x-2,∴MN=y1-y2=(
1
2
x-
1
2
)-(
1
2
x2-
1
2
x-2)=-
1
2
x2+x+
3
2
=-
1
2
(x-1)2+2,∵-
1
2
<0,∴当x=1时,线段MN的长度有最大值2.

回答2:

0分你叫我怎么弄