如图,O是直角坐标原点,A、B是抛物线y2=2px(p>0)上异于顶点的两动点,且OA⊥OB,OM⊥AB并与AB相交于

2025-06-20 11:44:35
推荐回答(1个)
回答1:

根据条件,设点M,A,B的坐标分别为(x,y),(2pt12,2pt1),(2pt22,2pt2),t1≠t2,且t1t2≠0,

OM
=(x,y),
OA
=(2pt12,2pt1),
OB
=(2pt22,2pt2)

AB
=(2p(t22?t12),2p(t2?t1))

OA
OB
,∴
OA
?
OB
=0

即(2pt1t22+(2p)2t1t2=0.
∴t1t2=-1.
OM
AB
,∴2px(t22-t12)+2py(t2-t1)=0,
t1+t2=?
y
x
(x≠0)

AM
=(x?2pt12,y?2pt1)
MB
=(2pt22?x,2pt2?y)
,且A,M,B共线,
∴(x-2pt12)(2pt2-y)=(y-2pt1)(2pt22-x),
化简得y(t1+t2)-2pt1t2-x=0,
由此可知M点的轨迹方程为x2+y2-2px=0,(x≠0).