根据条件,设点M,A,B的坐标分别为(x,y),(2pt12,2pt1),(2pt22,2pt2),t1≠t2,且t1t2≠0,
则
=(x,y),OM
=(2pt12,2pt1),OA
=(2pt22,2pt2),OB
=(2p(t22?t12),2p(t2?t1)),AB
∵
⊥OA
,∴OB
?OA
=0,OB
即(2pt1t2)2+(2p)2t1t2=0.
∴t1t2=-1.
∵
⊥OM
,∴2px(t22-t12)+2py(t2-t1)=0,AB
∴t1+t2=?
(x≠0),y x
∵
=(x?2pt12,y?2pt1),AM
=(2pt22?x,2pt2?y),且A,M,B共线,MB
∴(x-2pt12)(2pt2-y)=(y-2pt1)(2pt22-x),
化简得y(t1+t2)-2pt1t2-x=0,
由此可知M点的轨迹方程为x2+y2-2px=0,(x≠0).