(1)证明:∵E为BC的中点,
∴BE=CE,
∵AB∥CD,
∴∠BAE=∠CFE,∠ABE=∠FCE,
在△ABE和△FCE中,
,
∠BAE=∠CFE ∠ABE=∠FCE BE=CE
∴△ABE≌△FCE(AAS),
∴AE=FE,
又∵在四边形ABFC中,BE=CE,
∴四边形ABFC是平行四边形;
(2)解:∵BC=12,E是BC的中点,
∴BE=
BC=1 2
×12=6,1 2
∵BC⊥AB,
∴AE=
=
AB2+BE2
=10,
82+62
∴AF=2AE=2×10=20.