(2013?丹阳市二模)已知:如图,梯形ABCD中,AB∥CD,E是BC的中点,直线AE交DC的延长线于点F.(1)求证

2025-06-21 12:10:34
推荐回答(1个)
回答1:

(1)证明:∵E为BC的中点,
∴BE=CE,
∵AB∥CD,
∴∠BAE=∠CFE,∠ABE=∠FCE,
在△ABE和△FCE中,

∠BAE=∠CFE
∠ABE=∠FCE
BE=CE

∴△ABE≌△FCE(AAS),
∴AE=FE,
又∵在四边形ABFC中,BE=CE,
∴四边形ABFC是平行四边形;

(2)解:∵BC=12,E是BC的中点,
∴BE=
1
2
BC=
1
2
×12=6,
∵BC⊥AB,
∴AE=
AB2+BE2
=
82+62
=10,
∴AF=2AE=2×10=20.