已知函数,f(x)= x 3x+1 ,数列{a n }满足a 1 =1,a n+1 =f(a n )(n∈N * )(I)求证数

2025-06-21 13:23:28
推荐回答(1个)
回答1:

(I)由条件得, a n+1 =
a n
3 a n +1

1
a n+1
=
1
a n
+3
?
1
a n+1
-
1
a n
=3.
∴数列{
1
a n
}是首项为
1
a 1
=1,公差d=3的等差数列.
1
a n
=1+(n-1)×3=3n-2.
故a n =
1
3n-2

(II)∵a n a n+1 =
1
(3n-2)(3n+1)
=
1
3
1
3n-2
-
1
3n+1
).
∴S n ═a 1 a 2 +a 2 a 3 +..a n a n+1
=
1
3
[(1-
1
4
)+(
1
4
-
1
7
)+…+(
1
3n-2
-
1
3n+1
)]
=
1
3
(1-
1
3n+1
)=
n
3n+1