设长为x 宽为y所以体积V=xy(a-x-y)=axy-(x^2)y-x(y^2)令∂V/∂x=ay-2xy-y^2=0∂V/∂y=ax-2xy-x^2=0联立两个等式即(a-x-y)(x-y)=0因为a>x+y 所以x=y=a/3所以 当长宽高都为a/3是 取得体积最大