你好~~
(1)x²+y²=y即x²+y²-y+1/4=1/4,
x²+(y-1/2)²=(1/2)²,表示以(0,1/2)为圆心,以1/2为半径的圆,如图,粉色是D的范围,
积分区域是第一象限,那么由于x轴对应θ=0,y轴对应θ=π/2,所以θ的范围是[0,π/2],
令x=rcosθ,y=rsinθ,带入原方程得
r²cosθ²+r²sinθ²=rsinθ
r²=rsinθ
r=sinθ
即ρ(θ)=sinθ
ρ的下限是0,上限是ρ(θ),这是定义,
∴ρ的积分区间是[0,sinθ],θ的积分区间是[0,π/2]。
(2)√2x-x²与y=0所围区域在第1象限,
∵y=√2x-x²即y²+(x-1)²=1,y≥0是以点(1,0)为圆心,以1为半径的圆的上半部分
它与y=0围成的区间是一个半圆,
∴θ的范围同(1),也是[0,π/2],
那么令x=rcosθ,y=rsinθ,
x²+y²=2x,即r²cosθ²+r²sinθ²=2rcosθ,
即r²=2rcosθ,即r=2cosθ,
ρ的下限是0,上限是ρ(θ),
∴ρ的积分区间是[0,2cosθ],θ的积分区间是[0,π/2]。
希望能帮到你~~~~~ 如果还有什么问题可以hi我或者QQ~~