y=2cos2x+2cosx=2(cosx^2-1)+2cosx.设t=cosx.则-1<=t<=1.y=2t^2+2t-2.所以当t=-1/2时,y有最小值-5/2,有因为t=1离对称轴t=-1/2比t=-1远,故t=1y取最大值2,所以y的值域为[-5/2,2]
y = 2cos2x+2cosx
= 2*(2cos^2x-1)+2cosx
= 4cos^2x+2cosx-2
= 4(cosx+1/4)^2-9/4
-1≤cosx≤1
-3/4≤cosx+1/4≤5/4
0≤|cosx+1/4|≤5/4
0≤4(cosx+1/4)^2≤25/4
-9/4≤4(cosx+1/4)^2-9/4≤16/4
波澜起