x2+y2+2x=[(x+1)2+y2]-1,令z=[(x+1)2+y2,则z即为点(x,y)与点(-1,0)之间的距离的平方.∵点(-1,0)到直线3x+4y-12=0的距离为d= |(?1)×3?12| 5 =3,∴zmin=32=9.∴x2+y2+2x=[(x+1)2+y2]-1≥9-1=8.∴x2+y2+2x的最小值是8.故答案为:8.