对于正整数n,证明1⼀(1*2+2눀) + 1⼀(2*3+3눀) +1⼀[n*(n+1)+(n+1)눀]<5⼀12

2025-06-21 06:07:09
推荐回答(1个)
回答1:

n*(n+1)+(n+1)²〉2n*(n+1) 所以1/[n*(n+1)+(n+1)²]<1/2n(n+1)=1/2 ×[1/n -1/(n+1)]
则1/(1*2+2²) + 1/(2*3+3²) +。。。。+1/[n*(n+1)+(n+1)²]<1/2 ×[1-1/2+1/2-1/3+.....................+1/n-1/(n+1)]=1/2×n/(n+1)
以为n为正整数则当n=5时1/(1*2+2²) + 1/(2*3+3²) +1/[n*(n+1)+(n+1)²]<5/12成立