解答:证明:设直线方程为x=my+ p 2 ,与抛物线方程消去x,得y2-2pmy-p2=0设A(x1,y1),B(x2,y2),可得y1+y2=2pm,y1y2=-p2,直线OA的方程为y= y1 x1 x,x=- p 2 时,y=- y1 x1 ? p 2 =y2,∴B,D的纵坐标相等,∴BD⊥y轴;(2)解: OA ? OB =x1x2+y1y2=(m2+1)y1y2+ pm 2 (y1+y2)+ p2 4 =- 3 4 p2