已知三角形ABC,角A,B,C所对的边分别是a,b,c,S是ABC的面积,且满足(a^2+b^2+c^2)⼀S=4倍根号3

1,求证:sin(C+派/6)=(a^2+b^2)/2ab2, 是判断三角形的形状
2025-06-21 12:30:57
推荐回答(1个)
回答1:

(1)证明:
由题意知:(a²+b²+c²)/S=4√3
又因为:S=ab*sinC/2
所以:(a²+b²+c²)/(ab*sinC/2)=4√3
化简得:a²+b²=2√3ab*sinC-c² ①

由余弦定理,得:cosC=(a²+b²-c²)/2ab
则:a²+b²=2ab*cosC+c² ②

由①②得:2√3ab*sinC-c²=2ab*cosC+c²
4ab[(√3/2)*sinC-(1/2)*cosC]=2c²
2ab[(√3/2)*sinC-(1/2)*cosC]=c²

则:c²/2ab=[(√3/2)*sinC-(1/2)*cosC]

由余弦定理知:(a²+b²)/2ab=cosC+c²/2ab=[(√3/2)*sinC+(1/2)*cosC]=sinC*cosπ/6+cosC*sinπ/6=sin(C+π/6)
命题得证

(2)解:
a²+b²+c²-4√3S
=(a²+b²-2bacosC)+a²+b²-4√3*(1/2)ab*sinC
=2a²+2b²-2ab*cosC-2√3ab*sinC
=2a²+2b²-4ab[(1/2)cosC+(√3/2)sinC]
=(2a²+2b²-4ab)+[4ab-4ab*cos(60-C)]
=2(a-b)²+4ab[1-cos(60-C)]

因为:
-120°< 60°-C < 60°
-1/2 < cos(60°-C) ≤ 1
0 ≤ 1-cos(60°-C) < 3/2
所以:
a²+b²+c²-4√3S = 2(a-b)²+4ab*[1-cos(60-C)] ≥0
当且仅当a=b且C=60°时,等号成立
即:(a²+b²+c²)/S=4√3
所以:△ABC为等边三角形