求微分方程dy⼀dx=e^(x-2y)的通解,求详解,在线等,,不胜感激

2025-06-20 13:48:10
推荐回答(2个)
回答1:

令u=x-2y
则u'=1-2y'
代入原方程得:(1-u')/2=e^u
故u'=1-2e^u
du/(1-2e^u)=dx
d(e^u)*1/[e^u(1-2e^u)]=dx
d(e^u)*[1/e^u+2/(1-2e^u)]=dx
积分:lne^u-ln|1-2e^u)|=x+C1
e^u/|1-2e^u|=Ce^x
e^(x-2y)/|1-2e^(x-2y)|=Ce^x

回答2:

e^(2y)dy=e^xdx
(1/2)e^(2y)=e^x+(1/2)C
2y=ln(2e^x+C)
y=(1/2)ln(2e^x+C)