求广义积分【1,+∞】∫[(ln²x)/x²]dx
解:令lnx=u,则x=e^u,dx=(e^u)du;x=1时u=0;x=+∞时u=+∞;故:
原式=【0,+∞】∫(u²e^udu)/e^(2u)=【0,+∞】∫(u²du)/e^u=【0,+∞】-∫u²d[e^(-u)]
=【0,+∞】-[u²e^(-u)-2∫ue^(-u)du]=【0,+∞】[-u²e^(-u)+2∫ue^(-u)du]
=【0,+∞】{-u²e^(-u)-2∫ud[e^(-u)]}=【0,+∞】{-u²e^(-u)-2[ue^(-u)-∫e^(-u)du]}
=【0,+∞】{-u²e^(-u)-2ue^(-u)+2∫d[e^(-u)]}=[-u²e^(-u)-2ue^(-u)+2e^(-u)]【0,+∞】
=[(-u²-2u+2)e^(-u)]【0,+∞】=u→+∞lim[(-u²-2u+2)/e^u]-2=u→+∞lim[(-2u-2)/e^u]-2
=u→+∞lim(-2/e^u)-2=-2.