如图四边形ABCD内接于圆o AC是圆o的直径 AC与BD交于点E求tan∠ABD*tan∠ADB=AE⼀EC

2025-05-17 12:10:12
推荐回答(1个)
回答1:

∵△BCE∽△AED
∴AD/BC=ED/CE
∵△ABE∽△CDE
∴△AB/CD=AE/ED
∵AC是直径
∴∠ABC=∠ADC=90º
∴tan∠ABD×tan∠ADB=tan∠ACD×tan∠ACB=(AD/CD)×(AB/BC)=(AD/BC)×(AB/DC)=(ED/CE)×(AE/ED)=AE/EC