已知函数f(x)=-x2+4x,x∈[m,5]的值域是[-5,4],则实数m的取值范围是(  )A.(-∞,-1)B.(-1

2025-06-21 02:09:01
推荐回答(1个)
回答1:

解答:解:∵f(x)=-x2+4x=-(x-2)2+4,
∴当x=2时,f(2)=4,
由f(x)=-x2+4x=-5,
得x2-4x-5=0,
即x=5或x=-1,
∴要使函数在[m,5]的值域是[-5,4],
则-1≤m≤2,
故选:C.