1.内角和公式(n-2)*180
2.设三角形三个顶点为a、b、c,分别对应角a、角b、角c;过点a做直线l平行于直线bc,l与射线ab组成角为b',l与射线ac组成角为c',角b'与角b、角c'与角c分别构成内错角,根据平行线内错角相等定理,可得:三角形的内角和=角a+角b+角c=角a+角b'+角c'=180度
3.延长三角形abc各边,dab=c+b,eba=a+c,fca=a+b
所以dab+eba+fca=2a+2b+2c=360(三角形外角和为360)
所以a+b+c=180
1、已知:△ABC,求证:∠BAC+∠B+∠C=180°,证明:过点A作EF∥BC,∵EF∥BC,∴∠1=∠B,∠2=∠C,∵∠1+∠2+∠BAC=180°,∴∠BAC+∠B+∠C=180°.即知三角形内角和等于180°。
2、多边形内角和公式为:(n-2)*180°,则(3-2)*180°=180°
3、在BC边上任取一点D,作DE∥BA,DF∥CA,分别交AC于E,交AB于F
(1)则有∠2=∠B,∠3=∠C(两直线平行,同位角相等)
(2)∠1=∠4(两直线平行,内错角相等)
(3)∠4=∠A(两直线平行,同位角相等)
(4)∴∠1=∠A(等量代换)
(5)又∵∠1+∠2+∠3=180°(平角的定义)
(6)∴∠A+∠B+∠C=180°。
三角形内角和180°。
扩展资料:
三角形的性质
1、在平面上三角形的内角和等于180°(内角和定理)。
2、在平面上三角形的外角和等于360°
(外角和定理)。
3、在平面上三角形的外角等于与其不相邻的两个内角之和。
4、一个三角形的三个内角中最少有两个锐角。
5、在三角形中至少有一个角大于等于60度,也至少有一个角小于等于60度。
6、三角形任意两边之和大于第三边,任意两边之差小于第三边。