换元,令x=tant,dx=(sect)^2dt∫1/(1+x^2)^2dx=∫(sect)^2dt/[1+(tant)^2]^2=∫(sect)^2dt/(sect)^4=∫dt/(sect)^2=∫(cost)^2dt=(1/2)∫(cos2t+1)dt=(1/4)sin2t+(1/2)t+C=(1/4)[2tant/(1+(tant)^2)]+(1/2)t+C=(1/2)(x/(1+x^2)+(1/2)arctanx+C