求函数y=cos눀x-cosx+2的单调递减区间与单调递增区间

2025-06-20 16:37:30
推荐回答(2个)
回答1:

求函数y=cos²x-cosx+2的单调递减区间与单调递增区间
解析:∵f(x)=(cosx)^2-cosx+2
令f’(x)=-2(cosx)sinx+sinx=sinx(1-2cosx)=0
Sinx=0==>x1=2kπ,x2=2kπ+π
1-2cosx=0==>x3=2kπ-π/3,x4=2kπ+π/3
∵f’’(x)=-2cos2x+cosx==> f’’(x1)<0,f’’(x2)<0,f’’(x3)>0,f’’(x4)>0
∴f(x)在x1,x2处取极大值;在x3,x4处取极小值;
单调递增区间:[2kπ-π/3, 2kπ]或[2kπ+π/3, 2kπ+π]
单调递减区间:[2kπ, 2kπ+π/3]或[2kπ+π,2(k+1)π-π/3]

回答2:

设cosx=t t的范围[-1,1]
y=t²-t+2
当t∈[-1,0.5]时,单调递减,当t∈[0.5,1]时,单调递增,
当x∈(-π+2kπ,-π/3+2kπ)∪(π/3+2kπ,π+2kπ)时,单调递减
当x∈(-π/3+2kπ,π/3+2kπ)单调递增 k为整数

x∈[-π,