(Ⅰ)证明:①n=1时,x1=2,直线PQ1的方程为y?5=
(x?4)f(2)?5 2?4
当y=0时,∴x2=
,∴2≤x1<x2<3;11 4
②假设n=k时,结论成立,即2≤xk<xk+1<3,直线PQk+1的方程为y?5=
(x?4)f(xk+1)?5
xk+1?4
当y=0时,∴xk+2=
3+4xk+1
2+xk+1
∵2≤xk<xk+1<3,∴xk+2=4?
<4?5 2+xk+1
=35 2+3
xk+2?xk+1=
>0(3?xk+1)(1+xk+1) 2+xk+1
∴xk+1<xk+2
∴2≤xk+1<xk+2<3
即n=k+1时,结论成立
由①②可知:2≤xn<xn+1<3;
(Ⅱ)由(Ⅰ),可得xn+1=
3+4xn
2+xn
设bn=xn-3,∴
=1 bn+1
+15 bn
∴
+1 bn+1
= 5(1 4
+1 bn
)1 4
∴{
+1 bn
}是以-1 4
为首项,5为公比的等比数列3 4
∴
+1 bn
=(?1 4
)×5n?13 4
∴bn=?
4