如图15一2,0是∠ABC与外角∠ACD的平分线BD和C0的交点,试分析∠BOC与∠A有怎样的关系

2025-06-21 13:45:10
推荐回答(1个)
回答1:

∠A=2∠BOC
证明:
∵∠A+∠ABC+∠ACB=180
∴∠ABC+∠ACB=180-∠A
∵∠ACD=180-∠ACB,CO平分∠ACD
∴∠2=∠ACD/2=(180-∠ACB)/2=90-∠ACB/2
∵BO平分∠ABC
∴∠1=∠ABC/2
∵∠2是△OBC的外角
∴∠2=∠BOC+∠1=∠BOC+∠ABC/2
∴∠BOC+∠ABC/2=90-∠ACB/2
∴∠BOC=90-(∠ABC+∠ACB)/2=90-(180-∠A)/2=∠A/2
∴∠A=2∠BOC