因为:x,y都是正数,所以x+y≥2√xy>0,两边平方得:(x+y)^2≥4xy,两边同时除以4,得:(x+y)^2/4≥xy,即:xy≤(x+y)^2/4
依题得1/4(x+y)²≥xy (x+y)²≥4xy x²+y²+2xy≥4xy x²+y²-2xy≥0 (x+y)²≥0
(x+y)-4xy=(x-y)≥0于是问题得证