令f(x)=tanx+2sinx?3x,0<x< π 2 ,则f(0)=0且f′(x)=sec2x+2cosx-3f″(x)=2sec2xtanx-2sinx=2sinx(sec3x-1)显然,当x∈(0, π 2 )时,f″(x)>0∴f′(x)单调递增,而f'(0)=0∴当x∈(0, π 2 )时,f′(x)>f'(0)=0∴f(x)单调递增,而f(0)=0∴f(x)>f(0)=0即:3x<tanx+2sinx,x∈(0, π 2 ).