(1)短轴一个端点到右焦点的距离为√3, y轴正半轴上的短轴端点坐标为(0,b),右焦点为(c,0)
所以√(b²+c²)=√3,即b²+c² =3,即a²=3
a=√3,
因为 e=√6/3,即c/a=√6/3,所以c=√2
即b²= 3-c² =1
因此 椭圆C的方程为 x²/3 +Y² =1
(2)
S△AOB=|AB|*(√3/2)/2= (√3/4)|AB|,只要|AB|最大,三角形AOB的面积最大