∫tan³θ dθ
= ∫sin³θ/cos³θ dθ
= ∫sinθ(1-cos²θ)/cos³θ dθ
=∫sinθ/cos³θ dθ - ∫sinθ/cosθ dθ
= 1/(2cos²θ) + ln(cosθ) || θ 从 0 到 π/4
= (1/2)*[1/cos²(π/4) - 1/cos²0] + ln[cos(π/4)] - ln(cos0)
= (1/2) *(2 -1) + ln(√2/2) - ln1
= 1/2 - (1/2) ln2 - 0
= (1 - ln2)/2