y=(1+x²)arctanx
dy/dx = 2xarctanx + (1+x²)×[1/(1+x²)]
= 2xarctanx + 1
d²y/dx²= 2arctanx + 2x/(1+x²)
链式求导的一般方法:
y = uvwpqr
dy/dx = (du/dx)vwpqr + u(dv/dx)wpqr + uv(dw/dx)pqr + uvw(dp/dx)qr + uvwp(dq/dx)r
+ uvwpq(dr/dx)
设u=1+x^2, v=arctanx
所以,y'=u'v+uv'
y'=2x*arctanx+(1+x^2)*1/(1+x^2)
y'=2x*arctanx+1
同理,y''=2*arctanx+2x/(1+x^2)