解:cosA=3/5>0,A为锐角sinA=√(1-cos²A)=√[1-(3/5)²]=4/5>√2/2π/4sinB=5/13<½,又π/40cosB=√(1-sin²B)=√[1-(5/13)²]=12/13cosC=-cos(A+B)=sinAsinB-cosAcosB=(4/5)(5/13)-(3/5)(12/13)=-16/65sinC=sin(A+B)=sinAcosB+cosAsinB=(4/5)(12/13)+(3/5)(5/13)=63/65cosC的值为-16/65,sinC的值为63/65本题注意对A、B是否是锐角的判断,特别是不能想当然的认为cosB>0