证明:在BC上截取BE=BA∵∠ABD=∠EBD,BD=BD∴△BAD≌△BED∴DA=DE,∠A=∠BED∵AD=CD∴DE=DC∴∠C=∠DEC∵∠BED+∠DEC=180°∴∠A+∠C=180°
过D作DF⊥BC于F,作DE⊥AB,交BA的延长线于E,(∵BC>BA)∵AD=DC,BD又是∠ABC的角平分线∴Rt△DEA≌Rt△DFC∴∠DAE=∠C∵∠DAE+∠BAD=180º∴∠C+∠BAD=180º