有5盒茶叶,其中4盒每盒500克,另一代不是500克,但不知道比500克重还是轻,用天平至

2025-06-22 20:44:34
推荐回答(1个)
回答1:

12个小球的问题,也是不知道轻重,找出其中一个问题的,而且判断轻重:

首先,把12个小球分成三等份,每份四只。
拿出其中两份放到天平两侧称(第一次)
情况一:天平是平衡的。
那么那八个拿上去称的小球都是正常的,特殊的在四个里面。
把剩下四个小球拿出三个放到一边,另一边放三个正常的小球(第二次)
如天平平衡,特殊的是剩下那个。
如果不平衡,在天平上面的那三个里。而且知道是重了还是轻了。
剩下三个中拿两个来称,因为已经知道重轻,所以就可以知道特殊的了。(第三次)
情况二:天平倾斜。
特殊的小球在天平的那八个里面。
把重的一侧四个球记为A1A2A3A4,轻的记为B1B2B3B4。
剩下的确定为四个正常的记为C。
把A1B2B3B4放到一边,B1和三个正常的C小球放一边。(第二次)
情况一:天平平衡了。
特殊小球在A2A3A4里面,而且知道特殊小球比较重。
把A2A3称一下,就知道三个里面哪个是特殊的了。(第三次)
情况二:天平依然是A1的那边比较重。
特殊的小球在A1和B1之间。
随便拿一个和正常的称,就知道哪个特殊了。(第三次)
情况三:天平反过来,B1那边比较重了。
特殊小球在B2B3B4中间,而且知道特殊小球比较轻。
把B2B3称一下,就知道哪个是特殊的了。(第三次)

我试图用两次称出问题的一袋,没有办到。希望你参考一下,找出正确的方法。但是我估计也是至少需要3次,郁闷。