求由方程e^y+xy-e=0所确定的隐函数的导数dy⼀dx. 要详细过程,说明为什么要那样求,不够详细不给分!

2025-06-22 23:22:57
推荐回答(5个)
回答1:

由方程e^y+xy-e=0确定的函数是y=f(x),
因此在对方程两边对于X求导时,要把y看成是x的函数,这样就可以得到
e^y*y'+y+xy'=0
从而得到y'=-y/(e^y+x)
注:y'=dy/dx
如果方程F(x,y)=0能确定y是x的函数,那么称这种方式表示的函数是隐函数。而函数就是指:在某一变化过程中,两个变量x、y,对于某一范围内的x的每一个值,y都有确定的值和它对应,y就是x的函数。这种关系一般用y=f(x)即显函数来表示。F(x,y)=0即隐函数是相对于显函数来说的。
扩展资料:
对于一个已经确定存在且可导的情况下,我们可以用复合函数求导的链式法则来进行求导。在方程左右两边都对x进行求导,由于y其实是x的一个函数,所以可以直接得到带有
y'
的一个方程,然后化简得到
y'
的表达式。
隐函数导数的求解一般可以采用以下方法:
方法①:先把隐函数转化成显函数,再利用显函数求导的方法求导;
方法②:隐函数左右两边对x求导(但要注意把y看作x的函数);
方法③:利用一阶微分形式不变的性质分别对x和y求导,再通过移项求得的值;
方法④:把n元隐函数看作(n+1)元函数,通过多元函数的偏导数的商求得n元隐函数的导数。
举个例子,若欲求z
=
f(x,y)的导数,那么可以将原隐函数通过移项化为f(x,y,z)
=
0的形式,然后通过(式中F'y,F'x分别表示y和x对z的偏导数)来求解。

回答2:

求导定义:函数y=f(x)的导数的原始定义为
y'=f'(x)=lim(Δx→0)|(Δy/Δx)=lim(Δx→0)|Δy/lim(Δx→0)|Δx=dy/dx,
其中Δy=f(x+Δx)-f(x);
实数C的导数(C)'=0
导数的四则运算法则:u=u(x),v=v(x);
加减法原则:(u±v)'=u'±v'
证明:(u±v)'=lim(Δx→0)|(Δ(u±v)/Δx)=d(u±v)/dx,
其中Δ(u±v)=u(x+Δx)±v(x+Δx)-u(x)±v(x)
=[u(x+Δx)-u(x)]±[v(x+Δx)-v(x)]
=Δu±Δv,
则(u±v)'=lim(Δx→0)|(Δ(u±v)/Δx)
=lim(Δx→0)|(Δu/Δx)±lim(Δx→0)|(Δv/Δx)
=(du/dx)±(dv/dx)
=u'±v'
乘法法则(uv)'=u'v+uv'
证明:则(uv)'=lim(Δx→0)|(Δ(uv)/Δx)=d(uv)/dx,
其中Δ(uv)=u(x+Δx)v(x+Δx)-u(x)v(x)
=[u(x+Δx)v(x+Δx)-u(x)v(x+Δx)]+[u(x)v(x+Δx)-u(x)v(x)]
=[u(x+Δx)-u(x)]v(x+Δx)]+u(x)[v(x+Δx)-v(x)]
=Δu×v(x+Δx)]+u(x)×Δv
则(uv)'=lim(Δx→0)|[(Δu×v(x+Δx)]+u(x)×Δv)/Δx]
=lim(Δx→0)|[Δu×v(x+Δx)/Δx]+lim(Δx→0)|[u(x)×Δv/Δx]
=lim(Δx→0)|[Δu×v(x+Δx)/Δx]×lim(Δx→0)|v(x+Δx)+lim(Δx→0)|u(x)×lim(Δx→0)|[u(x)Δv/Δx]
=(du/dx)vx+u(x)(dv/dx)
=u'(x)v(x)+u(x)v'(x)
除法法则:(u/v)'=(u'v-uv')/v²
证明:与乘法法则的证法类似,此处略!
复合函数的求导法则:y=f(u)=f(u(x)),u=u(x),则y'=f'(u(x))×u'(x)
简证:y=f(u)=f(u(x)),u=u(x),
则y'=lim(Δx→0)|(Δy/Δx)
=lim(Δx→0)|[(Δy/Δu)×(Δu/Δx)]
=lim(Δx→0)|(Δy/Δu)×lim(Δx→0)|(Δu/Δx)
=(dy/du)×(du/dx)
=f'(u(x))×u'(x)
e^y+xy-e=0——原隐函数,其中y=f(x)
两边求导得(e^y+xy-e)'=0'
左边先由求导的加减法原则可知(e^y+xy-e)'=(e^y)'+(xy)'-(e)',
由常数的导数为0可知原隐函数两边求导后为:(e^y)'+(xy)'=0
由复合函数的导数可知(e^y)'=e^y×y',其中(e^x)'=e^x;
由求导的乘法法则可知(xy)'=y+xy',
即原隐函数的导数为e^y×y'+y+xy'=0(其中y'=dy/dx)
接下来求函数y的过程就是传说中的求解微分方程,
这个求解通常都比较难,而且往往是非常难!

回答3:

由方程e^y+xy-e=0确定的函数是y=f(x),
因此在对方程两边对于X求导时,要把y看成是x的函数,这样就可以得到
e^y*y'+y+xy'=0
从而得到y'=-y/(e^y+x)
注:y'=dy/dx

回答4:

很简单啊。
隐函数为f(x,y)=e^y+xy-e
这个隐函数的求导有个公式dy/dx=f(x,y)对x的偏导除以f(x,y)对y的偏导,并加上一个负号。(不会打偏导负号,见谅)即:dy/dx=-FX/FY
dy/dx=--y/(e^y+x)

回答5:


y=
f(x)
方程
:
e^(f(x))+xf(x)-e=0
在方程的两边对x求导数
e^(f(x))
f
'(x)+f(x)+xf
'(x)=0
.........①
解出:
f
'
(x)=
-f(x)/[x+e^(f(x))]

y
'
=
-y/(x+e^y)...........②
这说明:在.①中把f(x),换成
y
,就是把y
看成
x
的函数来
求导;有
e^y
*
y'+
y+
xy'=0