一道数学题:已知x+y+xy=1。求x+y的最大值

2025-06-22 01:39:10
推荐回答(2个)
回答1:

x>0,y>0?

x+y≥2√(xy)
x+y+xy=1

x+y=1-xy≥2√(xy)
[√(xy)]^2+2√(xy)-1≤0
0<√(xy)≤-1+√2
xy的最大值=3-2√2
x+y的最小值=2√2-2

x+y≥2√(xy)
(x+y)^2/4≥(xy)
1=x+y+xy≤x+y+(x+y)^2/4
即1≤x+y+(x+y)^2/4
(x+y)^2/4+(x+y)-1≥0
(x+y)≥2√2-2

x>=0,y>=0,x+y+xy=1
y=(1-x)/(1+x),y>=0,x<=1
x+y
=x+(1-x)/(1+x)
=(x^2+1)/(1+x)
x+y单调递增,
故当x=1时,y=0,x+y最大,为1

回答2:

看见x十Y;Xy就想到韦达定理再用根的判别式.就可以拉