解:4Sn=(an+1)^2
4Sn-1 =(an-1 +1)^2*********n-1为下标
则4an=4Sn-4Sn-1=(an+1)^2-(an-1 +1)^2
化简得(an -1)^2=(an-1 +1)^2
则an -1=正负(an-1 +1)
又{an}各项均为正数
则an -1=an-1 +1
即an-an-1=2
又令n=1,得a1=1
即{an}为首项为,公差为2的等差数列
即an=2n-1
4sn=(an+1)^2
4s(n+1)=(a(n+1)+1)^2=a(n+1)^2+2a(n+1)+1
所以两式相减
4a(n+1)=a(n+1)^2+2a(n+1)+1-(an+1)^2
(a(n+1)-1)^2-(an+1)^2=0
因为都是正数
a(n+1)-1=an+1
所以a(n+1)=an+2
2sn=an+1=sn-sn-1
由a1=s1,sn是等比数列,得出sn
由an=sn-sn-1就行了