1/(x^2-1)=1/(x+1)(x-1)=a/(x+1)+b/(x-1)=[(a+b)x+(b-a)]/(x+1)(x-1)所以a+b=0,b-a=1a=-1/2,b=1/2所以原式=-1/2∫1/(x+1)dx+1/2∫1/(x-1)dx=-1/2*ln|x+1|+1/2*ln|x-1|+C=1/2*ln|(x-1)/(x+1)|+C
=1/2[∫1/(1-x)+1/(1+x)]dx=1/2*ln|(x-1)/(x+1)|+C