不定积分∫1⼀(x^2-1)dx

2025-06-22 17:02:49
推荐回答(2个)
回答1:

1/(x^2-1)=1/(x+1)(x-1)
=a/(x+1)+b/(x-1)
=[(a+b)x+(b-a)]/(x+1)(x-1)
所以a+b=0,b-a=1
a=-1/2,b=1/2

所以原式=-1/2∫1/(x+1)dx+1/2∫1/(x-1)dx
=-1/2*ln|x+1|+1/2*ln|x-1|+C
=1/2*ln|(x-1)/(x+1)|+C

回答2:

=1/2[∫1/(1-x)+1/(1+x)]dx
=1/2*ln|(x-1)/(x+1)|+C