1)设A(x1,y1),B(x2,y2),左焦点(-c,0),
则直线l:y=x+c
由题意得
|AF2|+|BF2|=2|AB|,
∵|AF1|+|AF2|=2a,①
|BF1|+|BF2|=2a,②
①+②得
(|AF1|+|BF1|)+(|AF2|+|BF2|)=4a,
即|AB|+2|AB|=4a,
∵a=1,
∴|AB|=4a 3 =4 3 .
(2)∵PA=PB,
∴(x1+1)2+y12=(x2+1)2+yy22,
∴(x1+1)2-(x2+1)2+y12-y22=0
(x1-x2)(x1+x2+2)+(y1-y2)(y1+y2)=0 把y=x+c代入,得
(x1-x2)(x1+x2+2)+[(x1+c)-(x2+c)][(x1+c)+(x2+c)]=0,
(x1-x2)(x1+x2+2)+(x1-x2)(x1+x2+2c)=0
(x1-x2)[2(x1+x2)+2+2c]=0
∵x1≠x2,即x1-x2≠0
∴2(x1+x2)+2+2c=0
∴x1+x2+1+c=0
即(-2a2c 2a2-c2 )+1+c=0,
∵e=c a = 2 2 ,即a2=2c2
代入上式,得
c=3
∴a2=18,b2=9
椭圆方程为x2 18 +y2 9 =1.