如图,A.E.F.C在同一条直线上,AE=CF,过点E.F分别作DE⊥AC,BF⊥AC, 连接BD,交AC于G。

2025-06-22 12:31:39
推荐回答(2个)
回答1:

(1)BD与EF互相平分,

∵DE⊥AC,BF⊥AC,

∴BF∥DE,∠BFA=∠DEC=90°,

∵AE=CF,

∴AF=CE,

∵AB=CD,

∴△BFA≌△DEC,

∴BF=DE,

∴在△BGF和△DGE中,

∠BFG=∠DEG=90°,

∠BGF=∠DGE(对顶角),

∴∠FBG=∠EDG,

BF=DE,

∴△BGF和△DGE,

∴BG=DG,EG=FG,

∴BD与EF互相平分.

(2)结论还成立;

∵AE=CF,

∴AF=CE,

∵DE⊥AC,BF⊥AC,

∴∠BFA=∠DEC=90°,

∵在Rt△BFA和Rt△DEC中,

AB=CD、AF=CE,

∴Rt△BFA≌Rt△DEC(HL),

∴BF=DE,

∴在△BFG和△DEG中,

∠BGF=∠DGE、∠BFG=∠DEG、BF=DE,

∴△BFG≌△DEG(AAS),

∴EG=FG,BG=DG,

∴BD与EF互相平分,即结论成立. 

回答2:

答:(1)在直角三角形AFB和直角三角形CED中,AB=CD,AF=CE(AE=CF,同减去一个EF)
所以这两个直角三角形全等。
所以BF=DE,又可判断三角形BFG和三角形DEG全等
所以FG=EG,所以平分
(2)成立,证明过程同上。