函数 f﹙x﹚ = sin ²x +√3sinxcosx 在区间[π⼀4 , π⼀2 ] 上的最大值是?

2025-06-22 23:52:00
推荐回答(2个)
回答1:

f(x)=(sinx)^2+√3sinxcosx

=(√3/2)sin2x-(1/2)cos2x+1/2

=sin2xcosπ/6-cos2xsinπ/6+1/2

=sin(2x-π/6)+1/2

π/4<=x<=π/2,则π/3<=2x-π/6<=5π/6

当2x-π/6=π/2、即x=π/3时,f(x)取得最大值f(π/3)=1+1/2=3/2

.

回答2: