解:通项T(r+1)=C(7,r)*[a^(7-r)]*(x^r)令r=4,则C(7,4)*(a^3)=35即[(7×6×5×4)/(4×3×2×1)]a^3=3535a^3=35a^3=1故a=1.∴实数a的值为1.
由二项式定理,C(7,3)*a^3=35即35*a^3=35解得a=1.
因为(a+x)^7=a^7+7a^6x+21a^5x^2+35a^4x^3+35a^3x^4+21a^2x^5+7ax^6+x^7由上可知,当a=1时,x的4次方系数为35.