解答:(1)解:函数f(x)=sin(x+
)+cos(x-7π 4
)3π 4
=sinxcos
+cosxsin7π 4
+cosxcos7π 4
+sinxsin3π 4
3π 4
=
sinx-
2
2
cosx-
2
2
cosx+
2
2
sinx=
2
2
sinx-
2
cosx
2
=2sin(x-
),π 4
∴f(x)的最小正周期为π,f(x)max=2,f(x)min=-2;
(2)证明:cos(β-α)=cosβcosα+sinβsinα=
,4 5
cos(β+α)=cosβcosα-sinβsinα=-
,4 5
两式相加,得cosβcosα=0,
又0<α<β≤
,π 2
则cosα∈(0,1),cosβ=0,β=
,π 2
f(β)=2sin
=π 4
,
2
∴[f(β)]2-2=0.