已知函数f(x)=sin(x+7π4)+cos(x-3π4),x∈R.(1)求f(x)的最小正周期和最值;(2)已知cos(

2025-06-22 04:44:31
推荐回答(1个)
回答1:

解答:(1)解:函数f(x)=sin(x+

4
)+cos(x-
4

=sinxcos
4
+cosxsin
4
+cosxcos
4
+sinxsin
4

=
2
2
sinx-
2
2
cosx-
2
2
cosx
+
2
2
sinx=
2
sinx-
2
cosx
=2sin(x-
π
4
),
∴f(x)的最小正周期为π,f(x)max=2,f(x)min=-2;
(2)证明:cos(β-α)=cosβcosα+sinβsinα=
4
5

cos(β+α)=cosβcosα-sinβsinα=-
4
5

两式相加,得cosβcosα=0,
又0<α<β≤
π
2

则cosα∈(0,1),cosβ=0,β=
π
2

f(β)=2sin
π
4
=
2

∴[f(β)]2-2=0.