√因为1/a+1/b-1/(a-b)=0,所以a²-b²=ab,则a/b-b/a=1设a/b=x,则x-1/x=1即x²-x-1=0,解得x=(1±√3)/2
1/a+1/b-1/(a-b)=0(a+b)/ab=1/(a-b)(a+b)(a-b)=aba²-b²=aba²/a²-(b/a)²=b/a1-(b/a)²=b/a(b/a)²+(b/a)-1=0 b/a=(-1±√5)/2∵a>0,b>0, a/b>0∴b/a=(-1+√5)/2