∫2,0√(4-x^2)dx怎么算

2025-06-22 13:00:29
推荐回答(2个)
回答1:

你好

令x=2sint,dx=2costdt,x=2时,t= π/2,x=0时,t=0
∫(2,0)√(4-x^2)dx
=∫(π/2,0)2cost*2costdt
=2∫(π/2,0)2cos²tdt
=2∫(π/2,0)(1-cos2t)dt
=2t-sin2t│(π/2,0)


数学辅导团为您解答,不理解请追问,理解请及时选为满意回答!(*^__^*)谢谢!

回答2:

令x = 2sinθ、dx = 2cosθ dθ
∫(0→2) √(4 - x²) dx
= ∫(0→π/2) 4cos²θ dθ
= 2∫(0→π/2) (1 + cos2θ) dθ
= 2[ θ + (1/2)sin(2θ) ]:(0→π/2)
= 2[ π/2 + 0 ]
= π