如图,记抛物线y=-x 2 +1的图象与x正半轴的交点为A,将线段OA分成n等份,设分点分别为P 1 ,P 2 ,…P n-

2025-06-22 14:16:53
推荐回答(1个)
回答1:

由图象知S 3 =
n 2 -9
2 n 3
,总结出规律: S m =
n 2 - m 2
2 n 3
(1≤m≤n-1)

则w=S 1 +S 2 +…+S n-1 =
n 2 -1
2 n 3
+
n 2 -4
2 n 3
+…+
n 2 - (n-1) 2
2 n 3
=
(n-1) n 2 -[1+ 2 2 +…+(n-1 ) 2 ]
2 n 3

=
n 3 - n 2 -
(n-1)n(2n-1)
6
2 n 3

=
4 n 3 +3 n 2 -7n
12 n 3

=
1
2
-
1
2n
-
1
6
+
1
4n
-
1
12 n 2

=
1
3
-
1
4n
-
1
12 n 2

当n越来越大时,可知W最接近的常数为
1
3

故选C.