是否有笔误?
(2)lgn+lg(n+2)<2lg(n+1)
证明:左式=lg[n(n+2)]
10^lg[n(n+2)]=n(n+2)
右式=lg(n+1)^2
10^lg(n+1)^2=(n+1)^2
∵n(n+2)<(n+1)^2
∴lgn+lg(n+2)<2lg(n+1)
求证log以n+1为底的n的对数小于log以n+2为底的n+1的对数。
证明:用换底公式做!
左式=lgn/lg(n+1)
右式=lg(n+1)/lg(n+2)
两式通分后只比较分子的大小:
左式=[lgnlg(n+2)]/[lg(n+1)lg(n+2)]
右式=[lg(n+1)]^2/[lg(n+2)lg(n+1)]