已知函数f(x)=sinx(x>0),g(x)=x(x>0).(Ⅰ)当x∈(0,π2)时,求证:f(x)<g(x);(Ⅱ)

2025-06-22 02:13:45
推荐回答(1个)
回答1:

(1)令h(x)=f(x)-g(x),则h(x)=sinx-x,x∈(0,

π
2
),
∴h′(x)=cosx-1,∵x∈(0,
π
2
)
,∴0<cosx<1,
∴h′(x)<0,h(x)=sinx-x,x∈(0,
π
2
)
是减函数,而h(0)=0,
当x>0时,h(x)<h(0),即sinx-x<0,∴sinx<x,
故当x∈(0,
π
2
)
时,f(x)<g(x);
(2)令F(x)=g(x)?f(x)?
1
6
x3
(x>0),
F(x)=x?sinx?
1
6
x3
F(0)=0,F′(x)=1?cosx?
1
2
x2

令G(x)=F'(x),则G(x)=1?cosx?
1
2
x2
(x>0),G(0)=0,G'(x)=sinx-x.
由(1)知,当0<x<
π
2
时,sinx<x,而当x≥
π
2
时,sinx≤1,显然sinx<x,
故x>0时,都有sinx<x.
因此当x>0时,G'(x)=sinx-x<0,于是G(x)在(0,+∞)上是减函数,
而G(0)=0,当x>0时,G(x)<G(0),即1?cosx?
1
2
x2<0

故F'(x)<0,故F(x)在(0,+∞)上也是减函数,
而F(0)=0,当x>0时,F(x)<F(0),
x?sinx?
1
6
x3<0
也即g(x)?f(x)?
1
6
x3<0

g(x)?f(x)<
1
6
x3